

 Navigation

 	
 index

 	HGI JSON latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/hgi-json/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/hgi-json/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	HGI JSON latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 CHANGELOG.html

 Navigation

 		
 index

 		HGI JSON latest documentation »

Change Log

1.4.2 - 2016-08-04

Changed

		Fix for issue with fix in 1.4.1.

1.4.1 - 2016-08-04

Changed

		Fixed bug in serialisation of None,
reported [https://github.com/wtsi-hgi/python-json/issues/16#issuecomment-237527405] by
YuriIvanov [https://github.com/YuriIvanov] (#18 [https://github.com/wtsi-hgi/python-json/issues/18]).

1.4.0 - 2016-08-04

Changed

		Encoders now serialise None to null and visa-versa for decoders (thanks to
YuriIvanov [https://github.com/YuriIvanov] for bringing this improvement to light in
#16 [https://github.com/wtsi-hgi/python-json/issues/16]) (#17 [https://github.com/wtsi-hgi/python-json/issues/17]).

		Corrected self-referential type hinting.

1.3.1 - 2016-05-19

Changed

		Corrections to setup.py.

1.3.0 - 2016-05-19

Added

		Documentation on how to serialize to/from a dictionary opposed to a string.

		Documentation on how to install the library, import methods/classes and develop.

		imports via __init__.py.

Changed

		Removed useless equality and hash calculation methods on PropertyMapping.

		Improvements to documentation.

Removed

		Helper test runner scripts.

1.2.2 - 2016-05-18

Changed

		Hotfix for dependency installation when installed via PyPI.

1.2.1 - 2016-05-18

Changed

		Hotfix for package installation via PyPI.

1.2.0 - 2016-05-18

Added

		Added documentation on how the order of mappings is determined when using mappers and inheritance.

Changed

		Sorted packing to allow upload as package to PyPI.

		Changed license from GPL to MIT.

Removed

		Dependency on hgicommon library (still required for testing though).

1.0.0 - 2016-04-14

		First stable release.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		HGI JSON latest documentation »

 [image: Build Status] [https://travis-ci.org/wtsi-hgi/python-json]
[image: codecov.io] [https://codecov.io/gh/wtsi-hgi/python-json/]

Python 3 JSON Serialization

Python library for easily JSON encoding/decoding complex class-based Python models, using an arbitrarily complex (but
easy to write!) mapping schema.

Features

		Ability to create serializers and deserializers for complex class-based models using a mapping schema.

		Works seamlessly with Python’s in-built json.dumps and json.loads serialization methods - does not require the use
of exotic “convert_to_json”/”convert_from_json” methods.

		Python models are not be coupled to the serialization process - models do not have to inherit from a particular
superclass or implement an interface with a “to_json” (or similar) method.

		JSON representations produced are not coupled to the Python model - an arbitrary mapping between the JSON and the
model can be defined.

		Simple to define serialization of subclasses, based on how superclasses are serialized.

		Pure Python 3 - no DSL, XML or similar required to describe mappings, not using outdated Python 2.

		Well tested [https://codecov.io/gh/wtsi-hgi/python-json/].

Overview

		Define schema for mapping an object to and/or from JSON representation using a list of JsonPropertyMapping
definitions.

		Use MappingJSONEncoderClassBuilder with the mappings to build a subclass of JSONEncode for serializing instances
of a specific type. Similar with decode.

		Use created encoder class with Python’s in-built json.dumps via the cls parameter. Similar with decoder.

A mapping can be written that allows complex classes, such as that below, to be mapped to and from any JSON
representation:

class CustomClass(SupportFor, MultipleInheritance):
 self __init__(self, support_for_constructor_parameters):
 self.support_for_all_types_of_properties = ""
 self.including_sets = set()
 self.and_lists = list()
 self.and_dictionaries = dict()
 self.and_complex_properties = ComplexClass()
 self.and_properties_not_in_json_if_none = None

 self support_for_setters(self, value):
 ...

 self support_for_getters(self):
 ...

CustomClassJSONEncoder = MappingJSONEncoderClassBuilder(...).build() # type: JSONEncoder
CustomClassJSONDecoder = MappingJSONDecoderClassBuilder(...).build() # type: JSONDecoder

custom_class_as_json = json.dumps(custom_class, cls=CustomClassJSONEncoder) # type: str
custom_class = json.loads("<custom_class_as_json>", cls=CustomClassJSONDecoder) # type: CustomClass

How to use

Installation

Stable releases can be installed via PyPI:

$ pip3 install hgijson

Bleeding edge versions can be installed directly from GitHub:

$ pip3 install git+https://github.com/wtsi-hgi/python-json.git@<commit_id_or_branch_or_tag>#egg=hgijson

To declare this library as a dependency of your project, add it to your requirement.txt file.

Imports

All methods and classes can be imported with:

from hgijson import *

Once what is required is known, [it is good practice]
(http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#importing) to import things explicitly, e.g.:

from hgijson import JsonPropertyMapping, MappingJSONEncoderClassBuilder, MappingJSONDecoderClassBuilder

Functionality

		One-to-one JSON property to object property mapping

		Arbitrary mapping to JSON property value

		Arbitrary mapping to object property value

		Deserializing objects with constructors parameters

		Deserializing objects with mutators

		Conditionally optional JSON properties

		Inheritance

		Nested complex objects

		One-way mappings

		Casting JSON “primitives”

		Optional parameters

		Sets

		Serialization to/from a dict

One-to-one JSON property to object property mapping

Model:

class Person:
 def __init__(self):
 self.name = "Bob Smith"

JSON:

{
 "full_name": "<person.name>"
}

To define that:

		The JSON “full_name” property is set from the object’s “name” property.

		The object’s “name” property is set from the JSON’s “full_name” property.

mapping_schema = [
 JsonPropertyMapping("full_name", "name")
]

Build classes that can serialize/deserialize Person instances:

PersonJSONEncoder = MappingJSONEncoderClassBuilder(Person, mapping_schema).build()
PersonJSONDecoder = MappingJSONDecoderClassBuilder(Person, mapping_schema).build()

Serialize/deserialize instance of Person using Python’s inbuilt json.dumps and json.loads:

person_as_json = json.dumps(person, cls=PersonJSONEncoder)
person = json.loads("<person_as_json>", cls=PersonJSONDecoder)

Arbitrary mapping to JSON property value

Model:

class Person:
 def __init__(self):
 self.name = "Bob Smith"

 def get_first_name(self) -> str:
 return self.name.split(" ")[0]

 def get_family_name(self) -> str:
 return self.name.split(" ")[1]

JSON:

{
 "first_name": "<person.get_first_name()>",
 "family_name": "<person.get_family_name()>"
}

To define that:

		Serialization to the JSON “first_name” property value uses the object’s get_first_name method.

		Serialization to the JSON “family_name” property value uses the object’s get_family_name method.

mapping_schema = [
 JsonPropertyMapping("first_name", object_property_getter=lambda person: person.get_first_name()),
 JsonPropertyMapping("family_name", object_property_getter=lambda person: person.get_family_name())
]

See next section for how to do the reverse mapping.

Arbitrary mapping to object property value

Model:

class Person:
 def __init__(self):
 self.name = None

JSON:

{
 "first_name": "<person.name.split(' ')[0]>",
 "family_name": "<person.name.split(' ')[1]>"
}

To define that:

		The object’s name property value is derived from the value of both the “first_name” and “family name” JSON property
values:

mapping_schema = [
 JsonPropertyMapping("name", json_property_getter=lambda obj_as_dict: "%s %s" % (obj_as_dict["first_name"],
 obj_as_dict["family_name"]))
]

Deserializing objects with constructors parameters

Model:

class Person:
 def __init__(self, constructor_name: str):
 self.name = name

JSON:

{
 "full_name": "<person.name>"
}

To define that:

		Deserialization requires the value of the JSON “full_name” property be binded to the “constructor_name” parameter
in the constructor.

		Serialization to the JSON “full_name” property value uses the object’s “name” property value.

mapping_schema = [
 JsonPropertyMapping("full_name", "name", object_constructor_parameter_name="constructor_name")
]

If further modification of the decoded value is needed, object_constructor_argument_modifier can be set as a function
that takes the value retrieved by json_property_getter after it is decoded by using the decoder_cls JSON encoder and
returns the value that is binded to the constructor parameter.

Deserializing objects with mutators

Model:

class Person:
 def __init__(self):
 self._name = None

 def set_name(name: str):
 self._name = name

JSON:

{
 "full_name": "<person._name>"
}

To define that:

		Deserialization requires the private “_name” property be set via the “set_name” mutator from the “full_name” JSON
property.

mapping_schema = [
 JsonPropertyMapping("full_name", object_property_setter=lambda person, name: person.set_name(name))
]

Conditionally optional JSON properties

Model:

class Person:
 def __init__(self):
 self.name = name

JSON:

// if person.name is not None:
{
 "full_name": "<person.name>"
}
// else:
{
 // No `full_name` property
}

To define that:

		JSON representation should only include the “full_name” if it is not None (e.g. to reduce the size of the JSON).

def add_name_to_json_if_not_none(json_as_dict: dict, name: Optional[str]):
 if name is not None:
 json_as_dict["full_name"] = name

mapping_schema = [JsonPropertyMapping("full_name", json_property_setter=add_name_to_json_if_not_none)]

Inheritance

Models:

class Identifiable:
 def __init__(self):
 self.id = None

class Named:
 def __init__(self):
 self.name = None

class Employee(Identifiable, Named):
 def __init__(self):
 super().__init__()
 self.title = None

JSON:

{
 "identifier": "<employee.id>",
 "full_name": "<employee.name>",
 "job_title": "<employee.title>"
}

To define that:

		Serialization of Employee should “extend” the way Named and Identifiable are serialized.

identifiable_mapping_schema = [JsonPropertyMapping("identifier", "id")]
named_mapping_schema = [JsonPropertyMapping("full_name", "name")]
employee_mapping_schema = [JsonPropertyMapping("job_title", "title")]

IdentifiableJSONEncoder = MappingJSONEncoderClassBuilder(Identifiable, identifiable_mapping_schema).build()
NamedJSONEncoder = MappingJSONEncoderClassBuilder(Named, named_mapping_schema).build()
EmployeeJSONEncoder = MappingJSONEncoderClassBuilder(Employee, employee_mapping_schema, (IdentifiableJSONEncoder, NamedJSONEncoder)).build()

IdentifiableJSONDecoder = MappingJSONDecoderClassBuilder(Identifiable, identifiable_mapping_schema).build()
NamedJSONDecoder = MappingJSONDecoderClassBuilder(Named, named_mapping_schema).build()
EmployeeJSONDecoder = MappingJSONDecoderClassBuilder(Employee, employee_mapping_schema, (IdentifiableJSONDecoder, NamedJSONDecoder)).build()

Note: Each value mapping can be “overriden” by encoders used afterwards. Mappings of properties for superclasses are
done before those defined in the current class; the mappings for superclasses are completed in the order defined by the
tuple. e.g. In the example above, the mappings defined in IdentifiableJSONDecoder are applied first, then those in
NamedJSONDecoder, followed by those in EmployeeJSONDecoder. If EmployeeJSONDecoder redefined a mapping for the
id object property, the value for this property would first be written by the mapper from IdentifiableJSONDecoder
before been overwritten by a mapper defined in EmployeeJSONDecoder.

For obvious reasons, the mappings to constructor parameters defined in superclasses are not used.

Nested complex objects

Model:

class Person:
 def __init__(self):
 self.name = None

class Team:
 def __init__(self):
 self.moto = None
 self.people = [] # type: List[Person]

JSON:

{
 "team_moto": "<team.moto>",
 "members": "<[person in team.people]>"
}

To define that:

		Person instances, nested inside Employee objects, should be serialized and deserialized by specific encoder and
decoders.

employee_mapping_schema = [
 JsonPropertyMapping("team_moto", "moto"),
 JsonPropertyMapping("members", "people", encoder_cls=PersonJSONEncoder, decoder_cls=PersonJSONDecoder)
]

One-way mappings

Contrived example warning...

Model:

class Person:
 def __init__(self):
 self.name = None
 self.age = None

JSON input:

{
 "full_name": "<person.name>"
}

JSON output:

{
 "age": "<person.age>"
}

To define that:

		Serialization should ignore the object’s “name” property.

		Deserialization only with the JSON’s “full_name” property.

mapping_schema = [
 JsonPropertyMapping(
 json_property_getter=lambda json_as_dict: json_as_dict["full_name"],
 object_property_setter=lambda person, name: person.set_name(name)
),
 JsonPropertyMapping(
 json_property_setter=lambda json_as_dict, age: json_as_dict.__setitem__("age", age),
 object_property_getter=lambda person: person.age
)
]

Casting JSON primitives

To help with casting JSON primitives, the following decoders/encoders are provided:

		StrJSONEncoder: serializes value to a string (e.g. object property=123 -> JSON property="123").

		StrJSONDecoder: deserializes value as a string (e.g. JSON property=123 -> object property="123").

		IntJSONEncoder: serializes value to an int (e.g. object property="123" -> JSON property=123).

		IntJSONDecoder: deserializes value as an int (e.g. JSON property="123" -> object property=123).

		FloatJSONEncoder: serializes value to a float (e.g. object property="123.5" -> JSON property=123.5).

		FloatJSONDecoder: deserializes value as an float (e.g. JSON property="12.3" -> object property=12.3).

		DatetimeEpochJSONEncoder: serializes datetime to epoch, truncated to seconds (e.g. object property=datetime(1970, 1, 1, tzinfo=timezone.utc) -> JSON property=0).

		DatetimeEpochJSONDecoder: deserializes datetime as epoch (e.g. JSON property=0 -> object property=datetime(1970, 1, 1, tzinfo=timezone.utc)).

		DatetimeISOFormatJSONEncoder: serializes datetime to a ISO 8601 datetime representation (e.g. object property=datetime(1970, 1, 1, tzinfo=timezone.utc) -> JSON property=1970-01-01T00:00:00+00:00).

		DatetimeISOFormatJSONDecoder: deserializes ISO 8601 datetime representation to a datetime (e.g. JSON property="1970-01-01T00:00:00+00:00" -> object property=datetime(1970, 1, 1, tzinfo=timezone.utc)).

Model:

class Person:
 def __init__(self):
 self.age = 42

JSON:

{
 "years_old": "str(<person.age>)"
}

To define that:

		The age property of Person instances should be an int but given as a string in the JSON representation.

person_mapping_schema = [
 JsonPropertyMapping("years_old", "age", encoder_cls=StrJSONEncoder, decoder_cls=IntJSONDecoder)
]

Optional parameters

Model:

class Person:
 def __init__(self):
 self.name = None
 self.age = 42

JSON:

{
 "years_old": "<person.age>"
}

To define that:

		A JSON parameter is optional (i.e. it may/may not appear in the JSON representation).

		An object parameter should not be included in the JSON if it takes the value None.

person_mapping_schema = [
 JsonPropertyMapping("full_name", "name", optional=True),
 JsonPropertyMapping("years_old", "age")
]

Sets

JSON supports less “primitive types” than Python, implying that there cannot be an unambiguous, one-to-one mapping
between all Python and JSON “primitive types”. One such type without an equivalent in JSON is set. Python’s built-in
JSON library “handles” the serialiation of sets by raising a TypeError.

SetJSONEncoder and SetJSONDecoder are supplied in this library to support the serialization of sets. They work by
encoding sets as JSON lists then decoding these lists back into sets. As the mapping between JSON and objects is well
defined when using this library (i.e. it never has to guess the type of the Python object that is to be constructed from
a JSON representation), it is known if a JSON list should be decoded as list or as set.

Build classes that can serialize/deserialize sets of strings:

StringSetJSONEncoder = SetJSONEncoderClassBuilder(StrJSONEncoder).build()
StringSetJSONDecoder = SetJSONDecoderClassBuilder(StrJSONDecoder).build()

Model:

class Person:
 def __init__(self):
 self.nicknames = {"Rob", "Bob"}

JSON:

{
 "short_names": ["<person.nicknames>"]
}

To define that:

		The JSON “short_names” property is set from the object’s “nicknames” property, which is of type set.

		The object’s “nicknames” property is set from the JSON’s “full_name” property.

mapping_schema = [
 JsonPropertyMapping("short_names", "nicknames", encoder_cls=StringSetJSONEncoder, decoder_cls=StringSetJSONDecoder)
]

Serialization to/from a dict

To serialize an object to a dictionary, opposed to a string:

custom_object_as_dict = CustomJSONEncoder().default(custom_object) # type: dict

You can use this with any encoder that inherits from JSONEncoder and overrides default.

To deserialize an object from a dictionary, opposed to from a string:

custom_object = CustomJSONDecoder().decode_parsed(custom_object_as_dict)

You can only use this with decoders defined by this library as they implement the [ParsedJSONDecoder]
(https://github.com/wtsi-hgi/python-json/blob/master/hgijson/json/interfaces.py) interface. To achieve this
functionality with other JSONDecoder implementations, you would have to (wastefully) convert the dictionary to a
string using json.dump before using the decoder’s standard decode method.

Notes

		Decoders and encoders work for iterable collections of instances in the same way as they do for single instances.

		Encoders will serialize None to null and visa-versa for decoders.

		Encoders will only encode objects into JSON objects ({}). A custom JSONEncoder must be used to encode Python
objects that should be represented in any other way (e.g. as a JSON list ([])).

		Ensure your serializers are not vulnerable to attack if you are serializing JSON from an untrusted source.

Performance

If you are performing serialization, chances are that you are going to be doing/have done I/O. Given how relatively slow
the I/O will be, the performance of this library, compared with that of any other (including the endless JSON
libraries touted as “ultra fast”), is not going to be of realistic concern given reasonable amounts of data.

However, if you happen to be serializing huge numbers of objects and need it done extraordinarily fast (in Python?),
bare in mind that use of JSON encoders/decoders produced by this library will add a small amount of overhead on-top of
the in-built JSON serialization methods. In addition, the complexity of the mappings used will influence the performance
(i.e. if the value of a JSON property is calculated from an object method that deduces the answer to life, the universe
and everything, serialization is going to be rather slow).

Alternatives

		If you are not using class-based Python models and have no restrictions on the structure of the JSON representation:
		Python’s in-built json library [https://docs.python.org/3/library/json.html] will work out the box with its
default encoder (JSONEncode) and decoder (JSONDecode).

		demjson [https://github.com/dmeranda/demjson] can encode and decode JSON with added syntax checking.

		ultrajson [https://github.com/esnme/ultrajson] is claimed as an “ultra fast” JSON encoder and decoder.

		py-yajl [https://github.com/rtyler/py-yajl] is yet another “fast” JSON encoder/decoder.

		If you are using class-based Python models but your JSON need not be human readable and you are not concerned with
interoperability:
		jsonpickle [https://github.com/jsonpickle/jsonpickle] will automatically serialize objects.

		py-importjson [https://github.com/TonyFlury/py-importjson].

		If you want to deserialize flat data files into Python dict objects using mapping schema:
		jsonmapping [https://github.com/pudo/jsonmapping]

		If you do not mind coupling your Python models to the serialization library:
		jsonobject [https://github.com/dimagi/jsonobject].

		If you only wish to serialize models using a mapping schema and are not interested in deserialization or compatibility
with Python’s in-built json library.
		serpy [https://github.com/clarkduvall/serpy] can serialize complex models with arbitrary mappings from fields and
methods to JSON.

Development

Setup

Install both library dependencies and the dependencies needed for testing:

$ pip3 install -q -r requirements.txt
$ pip3 install -q -r test_requirements.txt

Testing

Using nosetests, in the project directory, run:

$ nosetests -v

To generate a test coverage report with nosetests:

$ nosetests -v --with-coverage --cover-package=hgijson --cover-inclusive

License

MIT license.

Copyright (c) 2015, 2016 Genome Research Limited

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

search.html

 Navigation

 		
 index

 		HGI JSON latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

